A linear regression solution to the spatial autocorrelation problem

نویسنده

  • Daniel A. Griffith
چکیده

The Moran Coe1⁄2cient spatial autocorrelation index can be decomposed into orthogonal map pattern components. This decomposition relates it directly to standard linear regression, in which corresponding eigenvectors can be used as predictors. This paper reports comparative results between these linear regressions and their auto-Gaussian counterparts for the following georeferenced data sets: Columbus (Ohio) crime, Ottawa-Hull median family income, Toronto population density, southwest Ohio unemployment, Syracuse pediatric lead poisoning, and Glasgow standard mortality rates, and a small remotely sensed image of the High Peak district. This methodology is extended to auto-logistic and auto-Poisson situations, with selected data analyses including percentage of urban population across Puerto Rico, and the frequency of SIDs cases across North Carolina. These data analytic results suggest that this approach to georeferenced data analysis o ̈ers considerable promise.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Analysis of inter-decade changes in trends and spatial patterns of annual and seasonal precipitation, case study: West of Iran

The present research about the spatial changes of precipitation is mainly focused on western areas of Iran. Precipitation data for three seasons of fall, winter, and spring have been obtained from Esafzari Database, with 15*15 km spatial resolution in the form of a Lambert Cone Image System for the period from 1986 to 2015. To examine the prevailing pattern of precipitation in west of Iran, we ...

متن کامل

A New Perspective about Moran’s Coefficient: Spatial Autocorrelation as a Linear Regression Problem

The computation of Moran’s index of spatial autocorrelation requires the definition of a spatial weighting matrix. The eigendecomposition of this doubly centered matrix (i.e., one that forces the sums of all rows and columns to equal zero) has interesting properties that have been exploited in various contexts: distribution properties of the Moran coefficient (MC), spatial filtering in linear m...

متن کامل

Linear Profile Monitoring in the Presence of Non-Normality and Autocorrelation

  In an increasing number of practical situations, the quality of a process or product can be effectively characterized and summarized by a profile. A profile is usually a functional relationship between a response variable and one or more explanatory variables which can be modeled frequently using linear or nonlinear regression models. In this paper, we study the effect of non-normality on pro...

متن کامل

Introduction of proper model of land slide relationship on sediment in GolGol basin system

Extended abstract 1- Introduction       Investigating the relationship between landslides in sediment production in watersheds is one of the most important issues in the management of watersheds. The purpose of this research is to introduce a suitable model for the effect of landslide on sediment load in Gol Gol watershed in Ilam province, with the assumption that the linear relationship betw...

متن کامل

Generalized Maximum Entropy Estimation of Spatial Autoregressive Models

We formulate generalized maximum entropy estimators for the general linear model and the censored regression model when there is first order spatial autoregression in the dependent variable and residuals. Monte Carlo experiments are provided to compare the performance of spatial entropy estimators in small and medium sized samples relative to classical estimators. Finally, the estimators are ap...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of Geographical Systems

دوره 2  شماره 

صفحات  -

تاریخ انتشار 2000